New Neural Network Based Mobile Location Estimation in a Metropolitan Area

نویسندگان

  • Muhammad Javed
  • Amir Hussain
  • Alexander Neskovic
  • Evan H. Magill
چکیده

This paper presents a new neural network based approach to the prediction of mobile locations using signal strength measurements in a simulated metropolitan area. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this paper which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. The paper first gives an overview of conventional location estimation techniques and the various propagation models reported to-date, and a new signalstrength based neural network technique is then described. A simulated mobile architecture based on the COST-231 Non-line of Sight (NLOS) WalfischIkegami implementation of a metropolitan environment is used to assess the generalization performance of a Multi-Layered Perceptron (MLP) Neural Network based mobile location predictor with promising initial results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Area State Estimation Based on PMU Measurements in Distribution Networks

State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...

متن کامل

An Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks

This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...

متن کامل

An Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks

This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005